LogoLogo
  • Dhee.AI
  • Concepts We Work on
    • What is NLP?
    • Natural Language Parser Pipeline
    • Word Embeddings
    • Textual Entailment
    • User Intent Recognition
    • Document Reading
  • Getting Started
    • Train your bot
      • Create your bot project
      • Train for Intent recognition
        • Define the Slots
        • Train the Triggers
        • Train for Stop-Triggers
      • Configure Agent Responses
      • Write your REST Endpoints
      • Configure Endpoints
      • Configure Workflow
        • Read Inputs
        • No Code Approach
        • REST Endpoints Approach
        • Acknowledge User
    • Build and Deploy
      • Build
      • Test
      • Deploy
        • Embedding Widget in Apps
  • Platform Reference
    • Manage Projects
    • Agent Settings
      • Basic
        • Language
        • Domain
        • Voice
        • Avatar Settings
      • Widget
        • Widget Theme
        • Widget Label
      • Advanced
      • Team
        • Development Team
        • Support Team
      • Import Export
      • Emailer
      • Billing
      • Botstore
    • Knowledge Management
      • Document Reading
      • Frequently Asked Questions
    • Intents and Automation
      • Intents
        • Slots
        • Triggers
        • Stop Triggers
        • Special Intents
      • Skills/DSM
        • Dialog Actions
        • Dialog State Transition
          • Slot State
        • Dialog Workflow
        • Skill API
      • Backend API
    • Extended Message Types
    • Entities And Other Data
      • Entities
        • Multilingual Entities
        • Language Specific Entities
        • Custom Entity Types
      • Agent Responses
        • Multilingual Responses
        • Missed Query Responses
        • Support-Unavailable Responses
      • Directive Utterances
        • Customize Inputs
        • Customize Outputs
      • Translations
      • Query Substitutions
      • Abbreviation Texts
    • Test & Deploy
      • Build
      • Test
      • Deploy
        • Launchpad
        • Widget
        • Signal
        • Telegram
        • Google RCS
        • Facebook
        • Alexa
        • Whatsapp
        • Custom App
        • Voice
        • Telephony
        • Email
    • Reports
      • Statistics
        • Summary
        • Daily Reports
          • Conversation Analytics
        • Weekly Reports
        • Monthly Reports
        • Output Spreadsheet
      • Conversations
        • Conversation Logs
        • C-SAT
      • Generate Report
        • Lead Report
        • Category Report
        • Device Demography Report
        • Utterance Report
        • Missed Query Report
        • Location Report
      • Report Settings
        • KPI
        • Schedule Report
      • Personnel Audit
        • Development Team
        • Support Team
          • Supervisory Sessions
          • Login Information
      • Bot Store
        • Reviews
        • Reported Issues
  • The Social Desk
    • Whatsapp
      • Customer Chat
      • Manage Template
      • Outreach Campaign
        • Create new
        • Manage Campaign
    • Reports
    • Settings
      • Team
      • Whatsapp
  • Extras
    • External Links
  • News
    • Dhee.AI's Edge Server for Telephony Achieves Breakthrough Optimization on Intel Architecture
  • Dhee.AI Telephony Edge Servers: Elevating Conversational AI Experience with Edge Computing
  • Pinnacle Teleservices Joins Forces with DheeYantra to Supercharge Conversational AI on WhatsApp
Powered by GitBook
On this page
  1. Getting Started
  2. Train your bot

Configure Endpoints

Tell Dhee about your tech stack's REST. She will make it work.

PreviousWrite your REST EndpointsNextConfigure Workflow

Last updated 2 years ago

In the example we are working on, we would like the chatbot to interact with our leave management system to apply for the leave on behalf of the user. For this, it needs to interact with an API Endpoint ( or a spreadsheet) to _mark_ the leave application with the details provided by the user.

The _endpoints_ need to be defined and registered with the Dhee.AI system before being consumed by our workflow. This could be done using the _IntentsAndAutomation->BackendAPI_ section.

Use the '+' Button to register a new endpoint. You would be required to provide

  • Url Name : An unique string to identify the endpoint.

  • Uri : The actual Uri of endpoint

  • Username : Username to use to access the Uri

  • Password : Password to use to access the Uri.

Configure endpintso